Reconstructing Gaussian sources by spatial sampling
نویسنده
چکیده
Consider a Gaussian memoryless multiple source with m components with joint probability distribution known only to lie in a given class of distributions. A subset of k ≤ m components are sampled and compressed with the objective of reconstructing all the m components within a specified level of distortion under a meansquared error criterion. In Bayesian and nonBayesian settings, the notion of universal sampling rate distortion function for Gaussian sources is introduced to capture the optimal tradeoffs among sampling, compression rate and distortion level. Single-letter characterizations are provided for the universal sampling rate distortion function. Our achievability proofs highlight the following structural property: it is optimal to compress and reconstruct first the sampled components of the GMMS alone, and then form estimates for the unsampled components based on the former. Index Terms Fixed-set sampling, Gaussian memoryless multiple source, sampling rate distortion function, universal sampling rate distortion function.
منابع مشابه
Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling
This paper presents an efficient Gaussian process inference scheme for modeling shortscale phenomena in spatio-temporal datasets. Our model uses a sum of separable, compactly supported covariance functions, which yields a full covariance matrix represented in terms of small sparse matrices operating either on the spatial or temporal domain. The proposed inference procedure is based on Gibbs sam...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملMultisource data fusion for bandlimited signals: a Bayesian perspective
We consider data fusion as the reconstruction of a single model from multiple data sources. The model is to be inferred from a number of blurred and noisy observations, possibly from different sensors under various conditions. It is all about recovering a compound object, signal+uncertainties, that best relates to the observations and contains all the useful information from the initial data se...
متن کاملA new method to consider spatial risk assessment of cross-correlated heavy metals using geo-statistical simulation
The soil samples were collected from 170 sampling stations in an arid area in Shahrood and Damghan, characterized by prevalence of mining activity. The levels of Co, Pb, Ni, Cs, Cu, Mn, Sr, V, Zn, Cr, and Tl were recorded in each sampling location. A new method known as min/max autocorrelation factor (MAF) was applied for the first time in the environmental research works to de-correlate these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018